Skip to main content

Introduction

Gemini CLI is Google’s official command-line tool that allows developers to interact with Gemini AI models through the terminal. By configuring APIMart API, you can use various advanced AI models provided by APIMart in Gemini CLI, including GPT, Claude, and Gemini series.

Prerequisites

Before getting started, ensure you have:
  1. Node.js and npm installed
    Download and install from Node.js official website (v16 or higher recommended)
  2. APIMart API Key
    Log in to APIMart Console to obtain your API key (starts with sk-)
Tip: If you don’t have an APIMart account yet, register at APIMart first and obtain an API key.

Step 1: Install Gemini CLI

1.1 Global Installation

Install Gemini CLI globally using npm:
npm install -g @google/gemini-cli

1.2 Verify Installation

Check if the installation was successful:
gemini --version
If it displays a version number, the installation was successful.

Step 2: Configure APIMart API

2.1 Temporary Environment Variables

For testing or one-time use, expires when terminal is closed: Windows (PowerShell):
$env:GEMINI_API_KEY = "sk-xxxxxxxxxxxx"
$env:GEMINI_BASE_URL = "https://api.apimart.ai/v1"
macOS/Linux (Bash):
export GEMINI_API_KEY="sk-xxxxxxxxxxxx"
export GEMINI_BASE_URL="https://api.apimart.ai/v1"
Write configuration to system, automatically applies on every terminal session: Windows (PowerShell):
  1. Run PowerShell as Administrator
  2. Execute the following commands to set user-level environment variables:
[System.Environment]::SetEnvironmentVariable('GEMINI_API_KEY', 'sk-xxxxxxxxxxxx', 'User')
[System.Environment]::SetEnvironmentVariable('GEMINI_BASE_URL', 'https://api.apimart.ai/v1', 'User')
  1. Restart PowerShell or execute the following commands to refresh environment variables:
$env:GEMINI_API_KEY = [System.Environment]::GetEnvironmentVariable('GEMINI_API_KEY', 'User')
$env:GEMINI_BASE_URL = [System.Environment]::GetEnvironmentVariable('GEMINI_BASE_URL', 'User')
macOS/Linux (Bash):
  1. Edit the configuration file (choose based on your shell):
# For Bash
nano ~/.bashrc

# For Zsh (macOS default)
nano ~/.zshrc
  1. Add the following at the end of the file:
# APIMart Gemini CLI Configuration
export GEMINI_API_KEY="sk-xxxxxxxxxxxx"
export GEMINI_BASE_URL="https://api.apimart.ai/v1"
  1. Save the file and reload configuration:
# For Bash
source ~/.bashrc

# For Zsh
source ~/.zshrc

2.3 Using .env File

Create a .env file in your project directory:
# .env
GEMINI_API_KEY=sk-xxxxxxxxxxxx
GEMINI_BASE_URL=https://api.apimart.ai/v1
Then load environment variables before running commands: macOS/Linux:
export $(cat .env | xargs) && gemini chat
Windows (PowerShell):
Get-Content .env | ForEach-Object {
    $name, $value = $_.split('=')
    Set-Content env:\$name $value
}
gemini chat
Important:
  • Replace sk-xxxxxxxxxxxx with your actual API key from APIMart Console
  • Set GEMINI_BASE_URL to https://api.apimart.ai/v1 to ensure Gemini CLI connects to APIMart
  • If using .env file, add it to .gitignore to avoid exposing your API key

2.4 Verify Configuration

Check if environment variables are set correctly: macOS/Linux:
echo $GEMINI_API_KEY
echo $GEMINI_BASE_URL
Windows (PowerShell):
echo $env:GEMINI_API_KEY
echo $env:GEMINI_BASE_URL
If the correct values are displayed, the configuration is successful.

Step 3: Start Using Gemini CLI

3.1 Basic Conversation

Start interactive conversation:
gemini chat
Or send a one-time request:
gemini "Please explain the history of artificial intelligence"

3.2 Specify Model

Chat with a specific model:
gemini chat --model gpt-4o
Or:
gemini "Write a Python quicksort algorithm" --model claude-sonnet-4-5-20250929

Step 4: Using APIMart API with Code

2.1 Using Python SDK

import openai

# Configure APIMart API
openai.api_key = "sk-xxxxxxxxxxxx"  # Your APIMart API key
openai.api_base = "https://api.apimart.ai/v1"

# Use Gemini model
response = openai.ChatCompletion.create(
    model="gemini-2.0-flash-exp",
    messages=[
        {"role": "user", "content": "Hello, please introduce yourself"}
    ]
)

print(response.choices[0].message.content)

2.2 Using JavaScript/TypeScript

import OpenAI from 'openai';

const client = new OpenAI({
  apiKey: 'sk-xxxxxxxxxxxx', // Your APIMart API key
  baseURL: 'https://api.apimart.ai/v1'
});

async function main() {
  const completion = await client.chat.completions.create({
    model: 'gemini-2.0-flash-exp',
    messages: [
      { role: 'user', content: 'Hello, please introduce yourself' }
    ]
  });
  
  console.log(completion.choices[0].message.content);
}

main();

2.3 Using cURL

curl https://api.apimart.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-xxxxxxxxxxxx" \
  -d '{
    "model": "gemini-2.0-flash-exp",
    "messages": [
      {"role": "user", "content": "Hello, please introduce yourself"}
    ]
  }'

Step 3: Choose the Right Model

Gemini Series:
Model NameModel IDFeaturesUse Cases
Gemini 2.0 Flashgemini-2.0-flash-expFast, multimodalQuick response, image understanding
Gemini 2.5 Progemini-2.5-proPowerful performanceComplex tasks, professional analysis
Gemini 2.5 Flashgemini-2.5-flashHigh-speed responseReal-time interaction, batch processing
GPT Series:
Model NameModel IDFeaturesUse Cases
GPT-5gpt-5Latest and strongestComplex reasoning, creative writing
GPT-4ogpt-4oHigh qualityDaily conversation, content generation
GPT-4o Minigpt-4o-miniCost-effectiveSimple tasks, high-frequency use
Claude Series:
Model NameModel IDFeaturesUse Cases
Claude Sonnet 4.5claude-sonnet-4-5-20250929Strong reasoningCode generation, logical analysis
Claude Haiku 4.5claude-haiku-4-5-20251001Extremely fastQuick Q&A, real-time chat
Model Selection Tips:
  • 🚀 Google Ecosystem: gemini-2.0-flash-exp, gemini-2.5-pro
  • 💡 Code Development: claude-sonnet-4-5-20250929, gpt-5
  • 💰 Cost Optimization: gpt-4o-mini, claude-haiku-4-5-20251001
  • Fast Response: gemini-2.0-flash-exp, gpt-4o-mini

Advanced Features

Multimodal Support

response = openai.ChatCompletion.create(
    model="gemini-2.0-flash-exp",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What's in this image?"},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://example.com/image.jpg"
                    }
                }
            ]
        }
    ]
)

Streaming Output

stream = openai.ChatCompletion.create(
    model="gemini-2.0-flash-exp",
    messages=[{"role": "user", "content": "Write a poem about spring"}],
    stream=True
)

for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end='')

FAQ

Q1: How to verify API configuration?

import openai

openai.api_key = "sk-xxxxxxxxxxxx"
openai.api_base = "https://api.apimart.ai/v1"

try:
    response = openai.ChatCompletion.create(
        model="gemini-2.0-flash-exp",
        messages=[{"role": "user", "content": "test"}],
        max_tokens=10
    )
    print("✅ API configuration successful!")
    print(f"Response: {response.choices[0].message.content}")
except Exception as e:
    print(f"❌ API configuration failed: {e}")

Q2: Supported Programming Languages?

APIMart API supports all programming languages that can send HTTP requests:
  • Python - Recommended with OpenAI SDK
  • JavaScript/TypeScript - Node.js and browser
  • Java - HTTP client
  • Go - Standard library or third-party packages
  • PHP - cURL or Guzzle
  • Ruby - HTTP library
  • C#/.NET - HttpClient
  • Swift - URLSession
  • Other languages - Any language supporting HTTP

Features

Using Google AI Studio + APIMart, you can:
  • 🤖 Multi-model Support - Access GPT, Claude, Gemini, and more
  • 🌍 OpenAI Compatible - Standard OpenAI API format
  • High Performance - Low latency, high concurrency
  • 💰 Transparent Pricing - Clear pay-as-you-go pricing
  • 📊 Usage Monitoring - Real-time API call tracking
  • 🔒 Secure & Reliable - Enterprise-grade security
  • 🚀 Quick Integration - Simple API calls
  • 📚 Complete Documentation - Detailed development docs and examples

Support & Help

If you encounter any issues:

Get Started with APIMart

Sign up for APIMart now, get your API key, and use multiple AI models in Google AI Studio!